

Projector, a LDraw stamping tool

Projector utility allows to stamp a flat pattern over a 3D former. Each set is provided to the utility as separate LDraw files. A
third file containing the raised pattern is created.

It is a simple console application, source code is provided below to anyone willing to integrate it in a more palatable user
interface.

Download

Projector package, including program for Windows, documentation, source files (Visual C++ 6.0), sample files.

History

V1.1: Initial release

Usage

Prepare the input LDraw pattern file. Pattern file may contain lines, triangles and quads, as well as flat primitives (see
details below). Other LDraw line types are ignored. For good results, each projected element as well as its origin must
reside entirely onto a single triangle/quad of former shape. Stamping occurs in Y direction, which means that the pattern
file must be in X-Z plane.
The 3D former file only deals with triangle and quads. Primitives must be inlined down to tri/quads. LDDesignPad does
this very conveniently. Other LDraw line types are ignored. Stamping occurs in Y direction, which means that the 3D
form must be mostly in X-Z plane.
Launch a command prompt
Type the command line: projector LdrawPatternFile Ldraw3DFile Ldraw3DPatternFileOut. Projector will create
Ldraw3DPatternFileOut, containing the raised pattern surface. Note that if file Ldraw3DPatternFileOut exists it will be
overwritten without warning.
Projector outputs file with 6 digits after decimal point, this precision is excessive for most usages and values should be
rounded. Here again, LDDesignPad does that very well.

Here is a screen shot of a sample run:

How Projector works

3D former file is read and parsed. Triangles and quads expanded to triangles are stored in arrays (limited to 1000 lines,
should be more than enough!).
Pattern file is then processed one line at a time. For each apex of lines/triangles/quads, y coordinate of the 3D former at
(x,z) point is calculated. (x,y,z) is then the 3D coordinate of the resulting apex. For primitives, projection of the
primitive origin is calculated. Orientation of the 3D file facet that contains the projected origin is then used to construct
the transformation matrix of the projected primitive. This is meaningful only for flat primitives that extend in x-z plane.
It is the case of all disc, ndisc and ring primitives.
Note that if a 3D former facet doesn't exist under a pattern point, this point will get (x,0,z) coordinates.
Transformed lines are written one at a time in the output file.

Example: building a Viking shield

3960s03, that contains the front of the shield, is inlined and cleaned up with LDDP to obtain
3D.dat file.

files: 3960s03.dat, 3D.dat

Using MLCad, 3D file is flattened. Hires primitives (whose resolution match 3960 one) are
drawn for the shield circles. This allow neat drawing. These primitives are then inlined with
LDDP.

file: shield1.dat

This LDraw file is converted to Quad2Dat format using Dat2QP. We then open this file in
Quad2Dat and draw the four rivets (actually I created only 1/2 rivet with Quad2Dat and
duplicated the result with MLCad, then converted again the final file with Dat2QP). We
obtain a template file which will be used with the 4 different Viking shields.

Command line: Dat2QP shield1.dat shield1.qp

files: shield1.qp, shield-template.qp

Now begins the tedious part. Each blank facet of the original template must be replaced with
the polygons forming the original pattern. As each polygon in the pattern will be projected on
a facet of the underlying former, it must be completely enclosed in a single template facet.
Note that red is used instead of dark red here: Quad2dat exports "complex" colors as separate
LDraw files, which is not very convenient. Global color replacement will fix that later.

Especially, one must use the "Along line" feature of Quad2dat to align pattern vertices with
edges of template facets. Don't rely on eye to place vertices on edge, that would result in
warped quads, holes in pattern, overlaps...

After the loooonnng manual vectorisation process, we obtain the final pattern...

file: shieldpatternflat.qp

We now export the result in LDraw format. Some quads of the original pattern were not
removed and they overlap pattern, this is cleaned by duplication/rotation using MLCad of
some correct quads done with Quad2Dat.

file: shieldpatternflat.dat

Flat pattern is now stamped on the former, using Projector.

Command line: Projector shieldpatternflat.dat 3D.dat shieldpattern3d.dat

file: shieldpattern3d.dat

To keep file size low, the pattern is separated into subparts, using color selection in MLCad.
At the same time red color that was used during the vectorisation is replaced with dark red,
and grey is changed into silver.

file: 3960p07b.dat

The second subpart, shared with other Vikink shields. This subpart also contains conditional
lines extracted from original shield design.

file: 3960p07a.dat

Here is the final result, the completed shield.

file: 3960p07.dat

